
Psychobiology
1999, 27 (1), 1-25

Pavlovian conditioning furnishes a productive tool and
framework for exploring the neurobiology of learning
and memory in mammals (Fanselow, 1998; Gormezano,
Prokasy, & Thompson, 1987; Kehoe, 1990; Kim, Krupa,
& Thompson, 1998; Kim & Thompson, 1997; Lam, Wong,
Canli, & Brown, 1996; Lavond, Kim, & Thompson,
1993; LeDoux, 1995; Mauk & Donegan, 1997; Moore &
Choi, 1997; Schmajuk, 1997; Thompson, 1986; Thomp-
son & Krupa, 1994). In a typical delay conditioning par-
adigm, the conditioned stimulus (CS) onset precedes the
unconditioned stimulus (US) onset, and the CS and the
US co-terminate. Under these circumstances, the animal
not only acquires a conditioned response (CR) to the CS,
but also learns about the CS–US interstimulus time in-
terval (ISI). Temporal learning is evident from the fact
that the CR is timed to peak near the US onset. 

Temporal learning is increasingly recognized as fun-
damental to understanding mechanisms of conditioning,
emotion, cognition, and motor control (Bouton, 1993;
Churchland, 1995; Gibbon, Malapani, Dale, & Gallistel,
1997; Harrington & Haaland, 1998; Ivry, 1996; Kesner,
1992; Mauk & Donegan, 1997; Moore, Choi, & Brun-

zell, 1998; Raymond, Lisberger, & Mauk, 1996; Rosen-
baum & Collyer, 1998; Schmajuk, 1997). It has been sug-
gested that time is the “primordial context” (Gibbon et al.,
1997) and that cognitive systems form “temporal maps”
that define the proximity in time of events in the world,
enabling “temporal expectations of environmental events”
(Schmajuk, 1997). There is a growing consensus that tem-
poral aspects of behavior must be addressed in modern
models of Pavlovian conditioning (Desmond, 1990; Gross-
berg & Schmajuk, 1989; Kehoe, 1988, 1990; Kehoe,
Horne, Macrae, & Horne, 1993; Mauk & Donegan, 1997;
Moore, Berthier, & Blazis, 1990; Moore & Choi, 1997;
Moore et al., 1998; Moore, Desmond, & Berthier, 1989;
Schmajuk, 1997; Sutton & Barto, 1981, 1990), especially
in those that seek to make contact with the underlying neu-
robiological mechanisms. 

One natural and general approach to temporal infor-
mation processing is to map time onto space (Jeffress,
1948). For very short time intervals (0 –~650 µsec), the
action potential propagation duration, combined with spe-
cialized coincidence detection circuits, can perform this
mapping via a spectrum of delay lines (Carr & Konishi,
1988). For somewhat longer time intervals (0.5–500 msec
or even longer), the neurobiological encoding mechanisms
are less obvious. Models have included time-varying 
activity vectors (Buonomano & Mauk, 1994); activity-
dependent properties of synaptic transmission, such as
facilitation and slow inhibition (Buonomano & Merzenich,
1995); arrays of tap delay lines (Desmond & Moore,
1988; Moore et al., 1990; Moore et al., 1989) or cascades
of spreading activation (Moore & Choi, 1997); groups of
neurons oscillating at different frequencies (Church &
Broadbent, 1991; Gluck, Reifsnider, & Thompson, 1990;
Mial, 1989); and time-dependent stimulus traces (Schma-
juk, 1997). Even greater durations (0.5 sec to tens of sec-
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Here we present a real-time model of fear conditioning in which the functional anatomy and neuro-
physiology of the lateral amygdala and perirhinal cortex provide a mechanism for temporal learning
during Pavlovian conditioning. The model uses realistic neuronal and circuit dynamics to map time
onto space and relies on a conventional Hebbian learning rule that requires strict temporal contiguity
for synaptic modification. The input–output relationships of the model neurons simulate our physio-
logical recordings with respect to latency to fire, firing frequency, and accommodation tendency.
Chains of these neurons form a spectrum of activity windows delayed by various amounts from the con-
ditioned stimulus onset. Simulations reveal that learning occurs only when the conditioned and un-
conditioned stimuli are explicitly paired, that the interstimulus interval (ISI) is accurately learned over
a time range from 0.5 to 16 sec, and that low-frequency noise causes the accuracy of temporal learning
to decrease as the ISI increases, in accordance with a Weber-type law.
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onds) are especially relevant to studies of fear condition-
ing, where it seems that rats can learn relatively long
CS–US intervals (J. S. Brown, Kalish, & Farber, 1951;
Davis, Schlesinger, & Sorenson, 1989). 

Models designed to accommodate these longer inter-
vals commonly invoke notions of endogenous clocks
(B. L. Brown, Hemmes, & Cabeza de Vaca, 1992; Ivry,
1996; Treisman, Cook, Naish, & MacCrone, 1994), an
idea whose cellular basis remains uncertain. We have been
examining the perirhinal cortex (PR) and the adjacent
lateral amygdala (ALa) area—brain regions thought to
be involved in fear conditioning (Cahill & McGaugh,
1998; Corodimas & LeDoux, 1995; Fanselow, 1998; Fan-
selow & Kim, 1994; LeDoux, 1995; Maren, 1996)—for
candidate neurobiological timing mechanisms (Faulkner,
1997; Faulkner & Brown, 1995, 1996, in press). Of par-
ticular interest to the present investigation is the hypoth-
esis that the amygdala is involved in encoding and pro-
cessing the interaction between temporal information
and affect, including “the time at which an affect-laden
experience occurs” (Kesner, 1992).

At the synaptic level, a common assumption is that as-
sociative long-term synaptic potentiation (LTP; Bar-
rionuevo & Brown, 1983; Kelso & Brown, 1986), a Heb-
bian form of synaptic plasticity (T. H. Brown, Kairiss, &
Keenan, 1990; Kelso, Ganong, & Brown, 1986), may be
a substrate for certain forms of Pavlovian conditioning
(Chapman, Kairiss, Keenan, & Brown, 1990; Kelso &
Brown, 1986; Lam et al., 1996; LeDoux, 1990, 1995;
Maren, 1996). One conventional model of fear condi-
tioning postulates that, during acquisition, the CS and US
converge in the ALa (Lam et al., 1996; LeDoux, 1990,
1993; Le Gal La Salle & Ben-Ari, 1981; Maren, 1996;
Quirk, Repa, & LeDoux, 1995; Romanski, Clugnet,
Bordi, & LeDoux, 1993) and that associative LTP can
occur in cells that receive simultaneous input from both
stimuli (Armony, Servan-Schreiber, Cohen, & LeDoux,
1995; Bordi, LeDoux, Clugnet, & Pavlides, 1993; Le-
Doux, 1990, 1993, 1995; LeDoux, Cicchetti, Xagoraris,
& Romanski, 1990; Maren, 1996; Quirk et al., 1995; Ro-
manski et al., 1993). The essential idea is that associative
LTP can increase the strength of the previously weak CS
input (see T. H. Brown et al., 1990; Kelso & Brown, 1986;
Kelso et al., 1986) to the extent that the CS-driven con-
nections become sufficiently strong to generate output
from the amygdala (Kapp, Whalen, Supple, & Pascoe,
1992; Lam et al., 1996; LeDoux, 1993, 1995; Maren,
1996). This CS-generated output from the amygdala can
orchestrate changes in the usual behavioral indices of
conditioned fear (Aggleton, 1992; Applegate, Frysinger,
Kapp, & Gallagher, 1982; Applegate, Kapp, Under-
wood, & McNall, 1983; Canli & Brown, 1996; Gallagher
& Chiba, 1996; Gallagher, Kapp, McNall, & Pascoe,
1981; Kapp, Frysinger, Gallagher, & Haselton, 1979;
Kapp, Gallagher, Underwood, McNall, & Whitehorn,
1982; Kapp, Supple, & Whalen, 1994; Lam et al., 1996;

LeDoux, 1995; Maren, 1996; Scott et al., 1997; Whalen
& Kapp, 1991).

One limitation of this conventional model is that it fails
to explain how associative LTP, which requires strict tem-
poral contiguity (T. H. Brown, Chapman, Kairiss, & Kee-
nan, 1988; T. H. Brown, Ganong, Kairiss, Keenan, &
Kelso, 1989; Kelso et al., 1986), might be involved in en-
coding the long ISIs that occur during fear conditioning.
In a more general context, this failure of associative LTP
to account for temporal aspects of Pavlovian condition-
ing has already been noted as a serious problem (see
Shors & Matzel, 1997). We recently discovered that the
cellular neurobiology and circuitry of the PR–ALa area
furnish an exquisite potential solution to this dilemma
(Faulkner, 1997; Faulkner, Tieu, & Brown, 1997). In par-
ticular, we found PR cells that are capable of delaying fir-
ing for 3–4 sec in response to either a synaptic input or
a current injection (Beggs, Moyer, & Brown, 1997;
Faulkner & Brown, 1995, 1996, in press) and anatomical
evidence suggesting that these cells are likely to be
chained in series (Faulkner, 1997; Faulkner & Brown,
1996, in press). On the basis of the neurobiology of the
PR–ALa area, we previously outlined a conceptual model
of how this region might participate in temporal encod-
ing during Pavlovian fear conditioning (Faulkner, Mc-
Gann, Tieu, & Brown, 1997; Faulkner, Tieu, & Brown,
1997; Tieu, Faulkner, & Brown, 1996). 

Here we elaborate on the conceptual model, develop a
method for simulating the model in a way that captures
the cellular and circuit dynamics, and show through sim-
ulations that the conceptual model does, in fact, work as
desired, when cast in a quantitative form. There were
four related goals. The first was to create and then eval-
uate the circuit-simulation software. The second was to
show through simulations how the neurobiological cir-
cuitry could encode and accurately learn long ISIs (we
looked at the range of 0.5–16 sec) using a standard Hebb-
ian synaptic mechanism. The third goal was to determine
whether this temporal learning mechanism naturally con-
forms to a Weber-like law, which quantifies the manner in
which the learning accuracy should decrease as the train-
ing ISI increases. The fourth goal was to evaluate through
simulations the more specific proposal that Weber-like
learning accuracy emerges from intrinsic noise. 

EXPERIMENTAL AND
CONCEPTUAL BACKGROUND

The PR–ALa region in the rat appears to play an im-
portant role in certain aspects of learning and/or perfor-
mance in fear conditioning (Corodimas & LeDoux, 1995;
Falls, Bakken, & Heldt, 1997; LeDoux, 1995; Maren,
1996; Rosen et al., 1992). This laboratory has been in-
vestigating the physiological and anatomical properties
of PR–ALa neurons (Beggs et al., 1997; Chapman et al.,
1990; Faulkner & Brown, 1995, 1996, in press) in order
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to understand how the circuitry might participate in
Pavlovian fear conditioning (Canli & Brown, 1996;
Faulkner, McGann, et al., 1997; Faulkner, Tieu, & Brown,
1997; Lam et al., 1996; Tieu et al., 1996). Of particular
relevance to CS processing in fear conditioning, the PR
is known to receive sensory inputs from both auditory
(Deacon, Eichenbaum, Rosenberg, & Eckmann, 1983;
Inagaki, Matsuda, Nakai, & Takagi, 1990; Mascagni,
McDonald, & Coleman, 1993; Romanski & LeDoux,
1993) and visual cortices (Miller & Vogt, 1984) and to
project strongly to the ALa (McDonald & Jackson, 1987;
Romanski & LeDoux, 1993; Turner & Zimmer, 1984).
The ALa, in turn, produces some of its effects via pro-
jections to the central nucleus of the amygdala (ACe;
Krettek & Price, 1978; Stefanacci et al., 1992; reviewed
in Faulkner, 1997).

Physiology and Anatomy of the PR–ALa Area
The cellular anatomy and physiology of the PR–ALa

area in the rat was recently studied in brain slices, using
whole-cell recordings from visually preselected neurons
(Faulkner, 1997; Faulkner & Brown, 1995, 1996, in
press).1 The patch pipettes contained biocytin, which en-
abled subsequent morphometric analysis of the recorded
neuron. On the basis of characteristic responses to out-
ward current steps, most of the cells in the PR could be
classified into four main neurophysiological types—
fast-spiking (FS), regular-spiking (RS), late-spiking
(LS), and burst-spiking (BS). The cellular neurophysiol-
ogy and neuroanatomy were incorporated into a concep-
tual model, schematized in  Figure 1A, based on the dy-
namics of three of the four primary cell types and their
interconnections (Faulkner & Brown, 1996; Faulkner,
Tieu, & Brown, 1997; Tieu et al., 1996).

Using video microscopy, layer I of the PR could be
seen to contain numerous afferents, dendrites of deep-
layer cells, and small FS neurons, which we presume to
be inhibitory. The small dendritic trees of the FS neurons
were restricted to layer I, and the axons were collateral-
ized extensively within the layer. FS neurons were seen
in every layer of the PR (as well as in the ALa) and could
maintain firing at frequencies over 100 Hz for a second
or more (Figure 1B, FS) without exhibiting accommo-
dation (i.e., the intervals between successive spikes did
not change). Layer II/III was replete with RS and LS
pyramidal neurons whose dendritic arbors branched ex-
tensively in layers I and II/III. The spiny dendrites of
some of these layer II/III neurons can be presumed to re-
ceive CS-generated input from adjacent sensory cortical
regions.

In response to a just-threshold current step, LS neurons
typically delay firing for 1–3 sec (LS in Figure 1B;  Fig-
ure 3C), but much longer delays have been seen (Beggs
et al., 1997; Faulkner, 1997; Faulkner & Brown, 1995,
1996, in press). The firing onset latency depends on both
the particular cell and the strength of the depolarizing

current. With long current pulses, LS cells may exhibit
anti-accommodation (the successive intervals between
action potentials in a train become shorter; see Fig-
ure 3C). Axons of layer II/III LS cells collateralize ex-
tensively within the layer and also project to layers V and
VI. The within-layer projections are consistent with the
possibility that LS cells are connected to each other in
chains or even loops (see Figure 1A). Because firing in
a LS neuron can be delayed by several seconds, even short
chains or small loops of LS cells could furnish large tem-
poral delays. Layer II/III RS neurons do not exhibit this
delayed spiking (Figure 1B, RS). In response to a long,
depolarizing current step, RS cells show accommodation
(successive intervals between action potentials become
longer until the cell ultimately ceases firing; see Fig-
ure 1B, RS). The axons of these cells collateralize within
the layer and also project to deeper layers of the PR.

There is no layer IV in PR. In  layer V, RS and BS cells
are prevalent, but we have not seen LS cells. Because the
conceptual model (Figure 1A) does not include BS cells
(because of uncertainty about their axonal projections),
they are not further discussed here. The axons of RS neu-
rons in layer V sometimes project back to layers II/III,
but they can also project to layer VI, the external capsule,
or the ALa. Among the large pyramidal cells, those of su-
perficial layer V have apical dendritic tufts that spread to
the outer edge of layer I. Their primary axons have been
followed for over a millimeter, traveling in the external
capsule with collaterals projecting throughout the PR. On
the other hand, the dendrites of the deep layer V pyra-
mids typically do not reach layer I, and their axons com-
monly project to the ALa.

LS neurons with ovoid somata are frequently found
clustered in nests within layer VI. Although the axons of
these LS cells generally collateralize in layer VI (sugges-
tive of local chains or loops), these cells have also been
seen sending their axons into the ALa, as well as to more
superficial layers of the PR. The latter projections again
are consistent with the idea of a reverberatory loop or a
chain between the superficial and the deep layers. RS
cells are also found in layer VI.

All of the firing properties seen in the PR were also ob-
served in the ALa. Among the RS cells in the ALa, the ex-
tent of accommodation was sometimes greater than that
seen in the PR. In extreme cases, the cells could be made
to fire only once or twice to a current step. These extreme
cases are called single-spiking (SS) neurons (Figure 1B,
SS). This laboratory previously reported SS neurons in the
ALa using microelectrodes (Chapman et al., 1990). In that
same study, we also demonstrated, under current- and volt-
age-clamp conditions, that LTP can be induced in the ALa.
Associative LTP (Barrionuevo & Brown, 1983; Kelso &
Brown, 1986) in the ALa plays a key role in much of the
contemporary thinking about fear conditioning (Chapman
et al., 1990; Fanselow, 1998; Faulkner, Tieu, & Brown,
1997; Lam et al., 1996; LeDoux, 1995; Maren, 1996).



4 TIEU, KEIDEL, MCGANN, FAULKNER, AND BROWN

Figure 1. Neurons and circuitry proposed to participate in processing conditioned stimulus (CS) information
en route to the lateral nucleus of the amygdala. (A) CS and unconditioned stimulus (US) inputs are indicated by
filled arrows (before entering the perirhinal-amygdala system) and by hollow arrows (after entering the system).
Excitatory synapses are indicated by solid triangular expansions and inhibitory synapses by short line segments
perpendicular to the axon. Abbreviations: PR, perirhinal cortex; ec, external capsule; ALa, lateral nucleus of the
amygdala; ACe, central nucleus of the amygdala; LS, late-spiking cell; RS, regular-spiking cell; FS, fast-spiking
cell; SS, single spiking neuron. (B) Whole-cell recordings from PR and ALa neurons illustrating four basic firing
patterns in the diagram of the conceptual model. The spiking types are indicated by their two-letter abbreviations,
given above. Calibration scale: 20 mV, 200 msec (LS and FS); 20 mV, 100 msec (RS and SS). The depolarizing
current step is shown only for the SS cell (lower trace). Modified from Faulkner (1997).
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Conceptual Model
The cellular anatomy and physiology of the PR–ALa

region furnished the foundation for a conceptual model
of temporal encoding and learning in fear conditioning
(schematized in Figure 1A; Faulkner, 1997; Faulkner,
McGann, et al., 1997; Faulkner, Tieu, & Brown, 1997; Tieu
et al., 1996). In this conceptual model, elaborated here,
the firing properties and circuit-level organization of PR
neurons provide a spectrum of delays, relative to the CS
onset, in the activity transmitted to the ALa. Recall that
activity induced by the CS and US is presumed to con-
verge in the ALa, resulting in associative LTP (Chapman
et al., 1990; Kelso & Brown, 1986; Lam et al., 1996;
Maren, 1996; Quirk et al., 1995; Romanski et al., 1993).
The range of delays in firing onsets observed in the ALa
results from various combinations of cell types and their
interconnections in the PR. The firing in the ALa, once
initiated, is presumed to terminate because of a combina-
tion of spike-frequency accommodation (in RS cells) and
synaptic inhibition (from FS cells), resulting in temporal
windows of activity.

Learning is proposed to result from a Hebbian synaptic
modification in the ALa whenever there is conjoint presy-
naptic and postsynaptic activity. It is known that Hebbian
synapses exist (T. H. Brown et al., 1990; Kelso et al., 1986;
Kirkwood & Bear, 1994; Magee & Johnston, 1997) and
can give rise to associative LTP (Barrionuevo & Brown,
1983; T. H. Brown et al., 1990; Kelso & Brown, 1986;
Levy & Steward, 1979). It is also known that LTP occurs
in the ALa (Chapman et al., 1990; Rogan & LeDoux,
1995). By analogy to associative LTP (Kelso & Brown,
1986; Kelso et al., 1986), the CS is presumed to generate
the requisite presynaptic activity, and the US is presumed
to generate the required postsynaptic activity. Because the
exact form of the synaptic modification rule in the ALa
is not yet known, here we assume a BCM-type learning
rule (Figure 4; “BCM” refers to the authors who first sug-
gested this rule: Bienenstock, Cooper, & Monro, 1982)
because it is biologically plausible and allows for bidirec-
tional synaptic change (see also Bear & Abraham, 1996;
Bear & Malenka, 1994; T.H. Brown & Faulkner, 1998;
T. H. Brown et al., 1990; Heynen, Abraham, & Bear,
1996; Hua & Houk, 1997; Magee & Johnston, 1997).
When a CS is explicitly paired with a US, LTP occurs in
the ALa in only those cells that were active at the time of
the US. 

The increased activity in the ALa is presumed to in-
crease the output from the ACe, which is believed to be
responsible for generating certain CRs (Canli & Brown,
1996; Kapp et al., 1979; Kapp et al., 1982; Kapp et al.,
1994; Kapp et al., 1992; Lam et al., 1996; LeDoux, 1993,
1995). In accordance with the BCM rule (Figure 4), long-
term synaptic depression (LTD) can, in principle, occur
(Debanne, Gähwiler, & Thompson, 1994; Kirkwood, Lee,
& Bear, 1995; Mulkey, Herron, & Malenka, 1993; Oliet,
Malenka, & Nicoll, 1997) during nonreinforced (extinc-
tion) trials when the CS input is active but the level of post-

synaptic activity is low (because there is no strong input
from the US). 

The conceptual model assumes that the CS is most re-
alistically represented by the spiking pattern among a large
set of input neurons. More specifically, CS-related neu-
ronal firing is viewed as a time-varying input activity vec-
tor (Mauk & Donegan, 1997). The FS cells in layer I me-
diate feedforward inhibition, tending to “normalize” these
time-varying input vectors. FS cells also mediate feedback
and lateral inhibition. 

SIMULATION METHODS

In this investigation, we simulated a simplified version
of the conceptual model (Faulkner, Tieu, & Brown, 1997),
subjected it to either of two training regimes, and then
tested it to see what it had learned. The program, YNET,
was written in C and run on a Sun Ultra 1 workstation. The
circuit that we used for simulations (see Figure 5) is sim-
pler than the conceptual model in three key respects. Our
computational model (1) is purely feedforward, (2) con-
sists of only RS and LS cell types, and (3) represents the
CS by activity on a single input line. The exclusion of FS
cells from the model does not pose a problem, because
(1) the simulated circuit does not include recurrent exci-
tation and (2) the accommodation of our model RS cells
is sufficient to terminate firing. 

Neurons
The behavior of our model neurons closely matches the

dynamics we see in our in vitro neurophysiological record-
ings, in terms of the relationship between their inputs and
their (1) output frequency, (2) delay in firing the first
spike, and (3) spike-frequency accommodation proper-
ties. Although we do not use conductances in these model
neurons, the symbols and formalisms are similar where
appropriate (see Appendices A–C, E). RS and LS neurons
can be thought of as consisting of five modules (accumu-
lator, accommodator, frequency generator, spike gener-
ator, and state), connected as illustrated in Figure 2.

The state is a collection of variables that holds infor-
mation about the cell, such as the time of the cell’s previ-
ous spike and the values produced by the other modules.
Input to the cell is handled by the accumulator, which is
implemented as a recurrence relation that rises and falls
on the basis of its previous value, the strength of the input,
a charging time constant, and an accommodation term
(determined by the accommodator). The accommodator
works differently for each cell type, causing RS cells to
accommodate and LS cells to anti-accommodate (FS cells
lack an accommodator and are nonaccommodating). The
frequency generator produces the cell’s spike-frequency
value on the basis of the level of the accumulator, and the
spike generator uses this spike-frequency value to deter-
mine when the cell spikes. The precise equations defin-
ing the modules and their interactions are given in Ap-
pendices A–C (see also Table E1 of Appendix E).
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It is important to emphasize the dynamic nature of our
model neurons. The values produced by the modules and
held in the state are constantly changing because of vary-
ing input and changes occurring within the neuron itself.
In the following descriptions of each cell type, it is as-
sumed for simplicity that the cell is in a noise-free envi-
ronment and that the stream of input to the cell, once ini-
tiated, is continuous and unvarying. Later, we will return
to the issue of noise.

Fast-spiking neurons. FS neurons are the simplest of
the three cell types and are the most similar to a conven-
tional integrate-and-fire unit (see Figure 3A). We created
only one type of FS cell, which is described and illus-
trated here, even though it is not used in the present circuit-
level simulations. These FS neurons and the formalisms
that define them furnish a simple reference point for
comparison. It is necessary to include them in recurrent
networks to maintain circuit stability. The precise equa-
tions and parameter values governing FS cells are given
in Appendices A and E (Table E1).

Unlike the RS and LS neurons, the representation of
FS neurons does not include an accommodator module
(Figure 2), so these model neurons do not exhibit accom-
modation (Figure 3A). Prior to receiving input, the ac-
cumulator of a FS neuron is empty (its value is zero), the
frequency and spike generators are inactive (their values
are zero), and the values held in the state remain unaltered.

When the cell begins receiving input, the accumulator
rapidly increases until it reaches the neuron’s spiking
threshold (given typical inputs, the rise to threshold takes
only ~10 msec for FS cells). Once spiking threshold is
reached, all of the modules are affected: The value of the
accumulator is boosted so that it equals the magnitude of
the input; the frequency generator is activated and deter-
mines the neuron’s spiking frequency; the spike genera-
tor changes its value from 0 to 1, representing the phys-
iological process of the neuron spiking; and the values in
the state are updated accordingly. 

As long as the stream of input remains unbroken, the
accumulator is set to the value of the input on each time
step. In simulations, the input can drop below spiking
threshold for long periods of time or even disappear com-
pletely. In such cases, the value of the accumulator is set
to a subthreshold value, and the frequency and spike gen-
erators are set to zero until the accumulator once again
rises above the spiking threshold. In the simpler scenario,
where the accumulator remains above spiking threshold,
the frequency generator stays active and generates the
neuron’s instantaneous spiking frequency value on each
time step. The values calculated by the frequency gener-
ator are completely dependent on the value of the accu-
mulator, which itself mirrors the magnitude of the input.
The frequency generator is a sigmoid function, so that
once a maximum frequency is reached, increasing the in-
tensity of the input cannot further increase the neuron’s
spiking frequency (see Figure 6). Following the initial
spike, the spike generator emits additional spikes on cer-
tain time steps in accordance with the frequency values
produced by the frequency generator. The output of the
spike generator is the only external output produced by the
model neuron.

Regular-spiking neurons. The functioning of RS neu-
rons is similar to that of FS neurons, with one important
addition: The representation of RS cells includes a fifth
module, called the accommodator (Figure 2), which is re-
sponsible for the accommodation properties exhibited by
RS cells (Figure 3B). Appendix B gives a formal account
of the implementation of RS cells (see also Table E1 of
Appendix E). For RS neurons, the value of the accumula-
tor is determined by the state and by a recurrence relation
that depends on the input, the value of the accumulator
on the previous time step, and the value of the accom-
modator. The accommodator is set to zero at the begin-
ning of a trial, and its value remains close to zero until
the accumulator reaches the cell’s spike threshold. The ac-
cumulator takes significantly longer to reach spike thresh-
old for RS cells than for FS cells.

Once the neuron has begun spiking, the accommoda-
tor grows at an accelerated pace, causing the accumula-
tor to decline slowly. Decreases in the accumulator cause
the frequency generator to produce lower values for the
neuron’s spiking frequency, resulting in lower frequency
output from the spike generator. Eventually, the accom-
modator causes the accumulator to fall below threshold,
which immediately forces the frequency generator to zero,
causing spiking to terminate (see Figure 3B). Deactiva-

Figure 2. Information flow and control among the modules
that generate the dynamics of each type of model neuron (de-
scribed in the text). The accumulator, accommodator, frequency
generator, and spike generator are algorithmic blocks of code.
The state is a data structure that is updated at every time step.
The accumulator, accommodator, and spike generator read from
and write to the state. The frequency generator only writes to the
state. A pair of solid and dashed lines indicates that the outer
module receives input before writing to the state. Fast-spiking
neurons lack an accommodator module. Regular-spiking and
late-spiking neurons have very different accommodators. 
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tion of the frequency generator prevents the spike gen-
erator from producing any further output, so that the neu-
ron ceases spiking for the remainder of the trial. As a re-
sult of these interactions, in response to a continuous and
fixed suprathreshold input, the intervals between succes-
sive spikes grow longer until the neuron eventually stops
firing. 

In our physiological recordings, there are variations
among RS cells in terms of the charging time constant
(which determines the amount of time before the accu-
mulator reaches spike threshold). In the equations for RS
cells (Appendix B), the charging time constant (τA) ap-
pears in the denominator of the recurrence relation for
the accumulator. To make our model RS neurons more
closely emulate our recorded RS neurons, we varied τA
to create four subtypes of RS cells (denoted RS1–RS4)
that differed in their delays before firing the first spike.
The value of τA is the only source of variation among the
RS cells used in these simulations. Other things being
equal, larger values of τA cause longer charging times be-
fore the neuron begins spiking. Among the different sub-
types of RS cells, the charging time necessary to reach
spike threshold ranges from 50 to 300 msec in response
to CS input. Table E1 in Appendix E lists the values of the
parameters used to create the four types of RS cells. For
comparison purposes, Table E1 also includes the param-
eter values for FS and LS neurons (parameters not used
are denoted NA).

Late-spiking neurons. LS cells are represented by
equations similar to those used for RS cells, but the ac-
commodator is implemented differently, causing LS
cells to exhibit anti-accommodation (successive intervals
between spikes become progressively shorter; see Fig-
ure 3C). Recall that, in RS neurons, the accommodator
is initially zero and begins to grow when the neuron
starts firing; with continuous firing, the accommodator’s
rate of growth accelerates until the accommodator termi-
nates the spike train. In LS cells, the accommodator acts
in an opposite manner. When an LS cell begins receiv-
ing input (assume for simplicity that it is continuous and
unvarying), the accommodator rapidly rises to a large value
(before the accumulator reaches spiking threshold), so
that the rate of growth of the accumulator is dramatically
reduced. Over a time span ranging from hundreds to thou-
sands of milliseconds, the accumulator gradually rises
while the accommodator slowly ebbs, until the accumu-
lator finally reaches the neuron’s spiking threshold. This
activates the frequency and spike generators, and the neu-
ron fires for the first time. Notice the long delay to the
first spike in the model LS neurons (Figure 3C), in com-
parison with the delays seen in the model FS and RS neu-
rons (Figures 3A and 3B, respectively). These firing pat-
terns resemble those observed in our whole-cell recordings
(Faulkner & Brown, 1995, 1996, in press).

Following the initial spike, the accommodator’s value
falls quickly and asymptotically approaches zero. The
decline of the accommodator allows the accumulator to
increase until it approaches the value of the input. As the
accumulator increases, so do the spike-frequency values
produced by the frequency generator, causing the spike
generator to fire the cell at an increasingly fast pace. The
process described above illustrates the two fundamental
features that distinguish LS cells from the other cell types
(see Figure 3): (1) As the name implies, LS cells undergo
a much longer delay before firing their first spikes, and
(2) LS cells demonstrate anti-accommodation. The first
difference is caused by the steep initial increase in the ac-
commodator in response to input. The second difference
is a consequence of the decrease in the accommodator
following the first spike. 

In our physiological recordings, LS neurons demon-
strated significantly longer output latencies (relative to
those of RS neurons) for any given input (Faulkner, 1997;
Faulkner & Brown, in press). These long spike delays are
possibly due to a slowly inactivating potassium current
(IKD, which is governed in the model neurons by τ h , max
in Appendix C; see Johnston & Wu, 1995). We therefore
varied the parameter controlling the decay of the accom-
modator (τ h , max ) to create four subtypes of LS cells that
differed in their delays before the initial spike. Table E1 in
Appendix E lists the values of the parameters used to cre-
ate the four types of LS cells, denoted LS1–LS4.

Synapses
Every synapse was given a weight that determined the

magnitude of the input received by the postsynaptic neu-
ron when the corresponding presynaptic neuron spiked.

Figure 3. Spiking patterns for the three types of model neu-
rons. (A) Fast-spiking cells exhibit the shortest latency to fire
and are nonaccommodating. (B) Regular-spiking cells receiving
direct conditioned stimulus input delay their spiking for 50 msec
and then accommodate (see also Figure 5 and text). (C) Late-
spiking 4 cells show the longest delay among all the model neu-
rons used in the simulations, and their spike trains exhibit anti-
accommodation.
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Synaptic input to each neuron equaled the summed prod-
ucts of the presynaptic activities and their corresponding
weights. The equations and constants used to implement
synapses are given in Appendix D and Table E2 of Ap-
pendix E.

Noise. In addition to the weighted sum described
above, in each synapse we introduced a Gaussian ran-
dom variable, z, to represent noise. There are several nat-
ural noise sources. Intrinsic synaptic noise is due to
probabilistic fluctuations in the number of quantal pack-
ets of transmitter released and to random variations in the
response to each released quantum (Stevens, 1996; Stevens
& Wang, 1994; Xiang, Greenwood, Kairiss, & Brown,
1994), as well as to fluctuations in the number of active
synapses at any given time. The synaptic noise we intro-
duced represented a combination of these three local
synaptic noise sources. Other noise components could
arise from fluctuations in CS processing associated with
such systems-level phenomena as changes in attention,
response-produced stimulus changes, or variations in
relative salience. Although these systems-level sources
could be included in the CS input to the circuit, in the
simulations that follow we assumed that the CS was pre-
sented to the PR–ALa circuitry in a noise-free fashion, so
that the local noise contributions could be more easily
evaluated. 

In the first set of simulations that included noise, a new
value of z was selected at each 1-msec time step, corre-
sponding to a high-frequency noise source. In the second
such set of simulations, lower frequency noise was injected

by changing the value of z on randomly selected time
steps determined from a uniform distribution with limits
of 50- and 250-msec time steps. These results were com-
pared and analyzed in relationship to noise-free simula-
tions. What we will see is that only noise in the appro-
priate frequency range resulted in Weber-like temporal
learning of the CS–US relationship. 

Synaptic modifiability. The weights of some model
synapses were unmodifiable (nonplastic), whereas oth-
ers exhibited bidirectional “Hebbian” (plastic) changes
(T. H. Brown et al., 1990). The Hebbian synaptic modi-
fication algorithm we used was a variant of the BCM
learning rule (Bienenstock et al., 1982; see Figure 4) that
allows synapses to potentiate (LTP) or depress (LTD), de-
pending on pre- and postsynaptic activity levels (Bear &
Abraham, 1996; Bear & Malenka, 1994; T. H. Brown
et al., 1990; Heynen et al., 1996; Kirkwood et al., 1995;
Magee & Johnston, 1997; Neveu & Zucker, 1996; Oliet,
Malenka, & Nicoll, 1996). There appears to be more than
one form of LTP/LTD (T. H. Brown et al., 1989; Cavus &
Teyler, 1996; Grover & Teyler, 1990; Nicoll & Malenka,
1995; Oliet et al., 1997; Teyler et al., 1994), and the exact
synaptic modification rules or algorithms (T. H. Brown
et al., 1990) have yet to be elucidated. 

Potentiation and depression. In our version of the
BCM-type learning rule, there are postsynaptic thresh-
olds for synaptic potentiation (�p) and depression (�d ;
Bear & Malenka, 1994; Bienenstock et al., 1982; Heynen
et al., 1996; Neveu & Zucker, 1996). The relationship
between postsynaptic frequency and the resulting change
in synaptic weight has the familiar BCM-type shape (Fig-
ure 4). For postsynaptic activity (firing frequency) val-
ues between �d and �p, there is a parabolic region of de-
pression, and for postsynaptic frequency values greater
than �p, there is a linear region of potentiation.

In the computational model, we introduced two addi-
tional variations to the basic BCM-type learning rule. The
first is that different kinetics exist for synaptic potentia-
tion and depression (see Appendix D and Table E2 of Ap-
pendix E). The second variation, made in agreement with
physiological findings, is that limits (Appendices D and
E) are imposed on the amount of change that can be pro-
duced by synaptic potentiation and depression (Bear &
Abraham, 1996; Bear & Malenka, 1994; Heynen et al.,
1996; Oliet et al., 1996). These limits prevent certain im-
plausible and/or undesirable outcomes (T. H. Brown
et al., 1990), such as weights that become extremely large
or that change sign from positive to negative.

Threshold for potentiation. At plastic synapses, the
value of the potentiation threshold, �p, was set so that the
US-produced postsynaptic activity would always be
greater than �p and the maximum value of postsynaptic
activity produced by the CS alone, after asymptotic learn-
ing, would be restricted to the following limits: �A �
ai (t) � �p, where �A is the neuron’s spiking threshold and
ai(t) is the level of postsynaptic activity. The effect is that
active plastic synapses associated with a nonreinforced
CS-produced input will depress; those associated with a

Figure 4. BCM-type φ–ai relationship. The postsynaptic activ-
ity level ai determines the value of the φ function. The φ function,
in conjunction with the presynaptic activity level aj, determines
the synaptic modification (see Appendix D). Low levels of post-
synaptic activity (ai (t) � �d ) result in no change in synaptic
strength (φ = 0), regardless of the level of presynaptic activity.
Somewhat higher postsynaptic activity levels (�d � ai (t) � �p) re-
sult in synaptic depression (φ� 0) if there is presynaptic activity
(aj � 0). Still greater postsynaptic activity (ai (t) � �p) causes
synaptic potentiation (φ� 0) if there is presynaptic activity. For
any given level of postsynaptic activity ai , the synaptic change de-
pends on the level of presynaptic activity aj . 
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reinforced synaptic input will potentiate; ones that have
potentiated sufficiently will be above the spiking thresh-
old; and conditioning cannot cause the synapses to be-
come self-potentiating in the absence of the US. 

Network Architecture
The PR and the ALa include massive recurrent exci-

tation, and recurrent circuits have some very desirable
properties (see Anderson, 1985; Churchland, 1995; Hin-
ton & Anderson, 1981; Hopfield, 1984; Kohonen, 1984).
However, in the interest of simplicity, the PR–ALa cir-
cuit used in this scaled-down computational model in-
cluded solely feedforward connections and consisted of
~1,600 neurons. The architecture was arranged to emu-
late only the feedforward aspects of the biological cir-
cuitry by which CS information can flow through the PR
and activate neurons in the ALa (see Figure 5). Note that
the ALa also received a direct US input. The output of the
ALa was monitored and used as the dependent variable. 

Perirhinal cortex. Altogether, 189 PR model neurons
received direct input from the CS, and each served as a
starting-point for a chain of neurons. This resulted in 189
independent nonbranching chains of various lengths and

cell types, as is suggested by the anatomy and physiology.
Short-latency inputs from the PR to the ALa were fur-
nished by short chains consisting largely of RS cells (see
Figure 5). Recall that, for all types of neurons, output fir-
ing stops as soon as input ceases. Thus, it was impossible
to build long chains of RS cells, because once any RS cell
stopped firing because of accommodation (which hap-
pened in less than 1.3 sec, given a typical input), the chain
was broken and all subsequent cells in the chain stopped
firing. 

Longer latency inputs to the ALa were formed by chains
of LS cells associated with layers II/III and VI. Some
chains of PR neurons included both RS and LS cells.
Chains of PR neurons varied in length from a minimum
of 2 neurons to a maximum of 14 neurons. Figure 5 il-
lustrates four viable model neuron chains. Notice that the
initial neuron in each chain is positioned to receive con-
tinuous CS input. The solid triangles represent RS cells,
and the open patterns represent two of the morphological
types of LS cells. Given a continuous input, chains of LS
cells were capable of sustained firing (because LS cells
anti-accommodate). The terminal neurons in all PR chains
projected to the first layer of RS neurons in the ALa. In
this way, synaptic activity traveled through the PR via
neuronal chains of various lengths (numbers of neurons)
and cell types, thus presenting CS input to RS neurons in
the ALa at a spectrum of delays. 

Lateral nucleus of the amygdala. The entire ALa
was compressed into two layers of RS1 cells, each con-
taining 189 neurons. The PR input to the first layer of
the ALa consisted of nonplastic synapses. The synaptic
weight of all nonplastic synapses carrying CS information
to the ALa was set to 30. The first layer of the ALa pro-
jected to the second layer of RS neurons via plastic (Heb-
bian) synapses. All the plastic synapses had a weight of
1 at the beginning of a conditioning session and were sub-
ject to minimum and maximum possible weights of 0 and
28, respectively. There was no convergence or divergence
between layers. 

The RS neurons of the second layer of the ALa received
direct US input in addition to activity from the first layer
of the ALa. The synaptic weight of the US input was 60,
double that of the nonplastic synapses carrying CS infor-
mation. The weight of the US input was, by design, suf-
ficient to drive postsynaptic activity in the second layer
RS neurons into the range of the BCM curve that allows
induction of long-term synaptic potentiation (Figure 4;
postsynaptic activity � �p). Because of their accommoda-
tion properties, RS cells in the ALa served to limit the
duration of activity from any given chain of PR neurons to
a relatively brief window, despite constant input. 

Associative LTP was restricted to the Hebbian synapses
onto RS neurons in the second layer of the ALa; these
RS neurons received simultaneous inputs representing
both the CS and the US. Hebbian inputs are depicted in
Figure 5 by unfilled (open) symbols for synapses, whereas
nonplastic inputs are represented by filled (solid) sym-
bols. The model did not include a representation of the

Figure 5. Network architecture. The network architecture was
derived from a simplification of the neuronal relationships de-
picted in Figure 1A. Information about the conditioned stimulus
(CS) is made available to the first neuron in each chain. The only
synapses capable of Hebbian modifications are those between the
first and the second rows of neurons in the lateral amygdala
(ALa). The perirhinal cortex (PR)–ALa circuit is comprised of
189 chains of neurons, ranging in length from 4 to 16 neurons.
Chains of PR neurons consisted of either regular-spiking (RS)
cells (subtypes 1–4), late-spiking (LS) cells (subtypes 1–4), or a
combination of both. The two layers of neurons in the ALa were
composed of only RS1 cells. The solid triangles represent RS neu-
rons, and the open patterns represent two of the various morpho-
logical types of LS neurons. ACe, central nucleus of the amygdala.
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subcortical CS input to the ALa (see Figure 1A), which is
also thought to be involved in aspects of conditioned re-
sponding (LeDoux, 1995; Romanski & LeDoux, 1992). 

Limitations of a developing database. Although the
scaled-down circuit used in this computational model
places the essential temporal machinery in the PR and
the essential plasticity in the ALa, this is simply a con-
venience and a reflection of our limited database of the
cellular neurobiology of these brain regions. Both timing
and plasticity may be operative in both regions, as well
as other circuitry that may be relevant to fear condition-
ing. Indeed, it would be surprising if the ALa neurons
were the only relevant site of convergence of CS and US
information (see Cahill & McGaugh, 1998; Killcross,
Robbins, & Everitt, 1997), although that is the implicit
assumption of some contemporary conceptual models. It
is important to recall that we already have evidence that
the ALa contains all of the same cell types that exist in
the PR, although the internal organization of the ALa is
somewhat more difficult to grasp, because it does not have
the convenient layering of the PR. Let us therefore reem-
phasize that we do not presume that learning and timing
are spatially segregated, which was done here partly for
convenience and partly because of limitations on biolog-
ical data.

Multisynaptic model neurons. The simplicity and
relatively small size of the circuitry created a problem
that is not commonly encountered in mammalian neuro-
biology—namely, the need for one neuron to be able to fire
another neuron. One presumes that synaptically-driven
neuronal firing is normally dependent on convergent
input from tens to hundreds of other presynaptic neurons.
Without using very large circuits, an obvious solution to
this problem is to make each synaptic weight unusually
strong—to use “detonator synapses.”

The alternative approach that we adopted seemed to
work better. We simply increased the frequency of synap-
tic inputs to a postsynaptic cell to 150 times the value sig-
naled by the frequency generator of the presynaptic neu-
ron. The effect was that a single neuron could f ire a
postsynaptic cell by itself without “jolting” the circuit
with periodic “detonator”-type synaptic inputs. This al-
lowed our scaled-down model to make use of simple
feedforward chains without the overhead associated with
convergent input in a much larger circuit. 

Experimental Design
Learning and testing. During the learning phase of

the experiment, the circuit was exposed to either of two
types of stimulus presentation. In the equivalent of an
“experimental” or “conditioning” group, the CS and US
were explicitly paired in a delay paradigm (six trials in
one conditioning session). The US was always 0.5 sec in
duration; the interval between the CS onset and the US
onset, or the ISI, was varied among different conditioning
experiments but was kept constant for all six trials within
a given conditioning session; and the CS and US co-
terminated. Thirteen different conditioning sessions were

conducted, with the ISIs ranging from 0.5 to 16 sec across
different sessions. 

In the equivalent of a “control” or “pseudoconditioning”
group, the CS and US durations were the same as those
in the experimental group and were presented the same
number of times; however, they were explicitly unpaired
(they did not overlap temporally). Specifically, the US
onset occurred 1 sec after the CS offset. In both groups,
each trial continued for 2 sec after the US offset, which
was more than enough time for the circuit to settle to an
inactive state. 

During the testing phase of the experiment, the CS
was presented alone (without the US) continuously for
30 sec. Each testing trial ended 2 sec after the CS offset.
The time of occurrence of all unit activity in the output
from the ALa was noted during the testing trial (see
below).

Dependent variable. Learning was monitored by the
output from the second layer of the ALa neurons. The time
of occurrence of all spikes in these ALa neurons was
recorded. Associative learning was assessed in terms of
differences between the experimental and the control cir-
cumstances in terms of CS-produced unit firing in these
ALa output neurons. Temporal encoding was evaluated
in terms of the relationship between the ISIs used during
associative conditioning and the resulting timing of CS-
produced output from the the ALa neurons. This relation-
ship is described via a scatterplot, its regression equation,
and the associated square of the Pearson product–
moment correlation coefficient (r 2, the coefficient of de-
termination). 

To determine whether temporal learning followed a
Weber-like law, we examined response accuracy as a func-
tion of the ISI used during conditioning. The possibility
of Weber-like temporal learning accuracy was examined
in scatterplots and by quantifying the relationship be-
tween the coefficient of variation of the firing latency
and the mean firing latency for all spikes in all output
neurons for each of the 13 ISIs used during conditioning
(Gibbon, 1977; Gibbon et al., 1997). 

SIMULATION RESULTS

We will start by describing the dynamical properties
of the neurons and exploring the temporal aspects of the
circuit-level performance that enable temporal encoding.
This will be followed by a demonstration that the model
does indeed accurately encode time over a long range of
ISIs. Finally, we will emphasize the importance of noise,
interacting with intrinsic circuit dynamics, in causing
Weber-like temporal learning (see Gibbon, 1977; Gib-
bon et al., 1997). 

Neuronal Dynamics
We created three basic types of model neurons—FS,

RS, and LS (see firing patterns in Figure 3)—but in the
circuit simulations described below, only the RS and LS
cells were used (see Figure 5). Because all three cell types
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will be necessary in subsequent studies and will pre-
sumably be useful to others interested in network-level
simulations using model neurons with realistic input–
output dynamics, all three types are compared here. The
behavior of our model neurons constitutes a reasonable
approximation of what we observed in our physiological
experiments on brain slices (Faulkner, 1997; Faulkner &
Brown, 1995, 1996, in press). Here, the dynamics of the
model neurons are captured in the same kinds of plots
used to characterize the input–output relationships of
recorded PR–ALa neurons.

It is clear from neurophysiological studies that there is
considerable variability within both the RS and the LS
categories, and we found that small parametric variations
allowed us to capture some of this variability in the form
of four subtypes of RS neurons (RS1–RS4) and four sub-
types of LS neurons (LS1–LS4), as was described earlier.
Because the FS cells are most similar to conventional 
integrate-and-fire units, they serve as a convenient point
of comparison with the RS and LS cells.

Frequency versus input intensity relationships. One
of the most characteristic features of a neuron is the rela-
tionship between its input magnitude (I) and its output fir-
ing frequency (F). Input intensity for the model neurons is
a dimensionless variable (which ranges in these experiments
between 0 and ~98) that represents the sum of the inputs to
a neuron (including noise; specified in Equations 23 and 24
of Appendix D).2 In neurophysiological studies, the firing
frequency is taken either as the mean over some time in-
terval (mean firing frequency) or as the reciprocal of the
interval between the first two action potentials during a
spike train (initial firing frequency). For relatively short
spike trains or for cells with little accommodation or anti-
accommodation tendencies, the two plots may be similar.

The three cell types are compared in Figure 6, which
gives F–I plots for both initial frequency (panel A) and
mean frequency (panel B). The curves are generally sig-
moidal in shape. The most striking difference is between
the FS cells and the other two types (RS and LS). The FS
cells can easily fire in excess of 100 Hz, whereas the LS
and RS cells have a maximum firing frequency of about
40 Hz, and the slope of the F–I relationship for FS cells
is considerably steeper. 

Differences among the four RS subtypes were rela-
tively small for both initial and mean F–I plots, so the il-
lustrated graphs (Figures 6A and 6B) show data from just
one subtype (RS3). On the other hand, there were appre-
ciable differences among the four LS subtypes in terms
of initial F–I curves. The plots in Figure 6A show the two
extreme subtypes (LS4 and LS1). The curves for the other
two LS subtypes are intermediate between these ex-
tremes. Because there were negligible differences among
the LS cells in the mean F–I curves, only a single type
(LS3) is plotted. 

Delay versus input intensity relationships. A critical
feature of the neuronal dynamics that enables temporal
encoding is the relationship between input intensity (I )
and the delay (D) from the input onset to the first spike.
Recall that FS cells have the shortest delay, RS cells have
a slightly longer delay, and LS cells have the longest delay.
In our neurophysiological experiments, we most com-
monly saw delays in LS cells in the range of 1–3 sec. For
all three model cell types, the delay is a monotonic de-
creasing function of the input intensity, as in our physi-
ological data. The most striking difference is between the
LS cells and the other two types (FS and RS). Substan-
tial differences among both the RS subtypes and the LS

Figure 6. Spike firing frequency as a function of input intensity.
The relationship between firing frequency (F) and input intensity
(I ) has a sigmoidal shape for all three types of neurons (see the text
for elaboration). Two kinds of F–I plots are shown. It is worth not-
ing that an input of 25 or larger was required to generate more
than one spike in regular-spiking 3 (RS3) cells (hence, no RS3 data
points for I � 25). (A) In the first type of F–I plot, the ordinate is
initial firing frequency (reciprocal of the interval between the first
two spikes). (B) In the second type of F–I plot, the ordinate is the
mean firing frequency (time average during a spike train). 
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subtypes of our model cells are captured in the D–I plots.
Figure 7A shows D–I curves for the four RS subtypes, as
well as for the FS cell. Recall that the RS subtypes differ
from each other only in regard to τA, which is smallest for
RS1 neurons and largest for RS4 neurons (see Table E2
of Appendix E). 

An analogous set of D–I curves for LS and FS cells is
shown in Figure 7B. As before, the FS cells are included
as a common reference point. In contrast to the RS cells,
LS subtypes all have the same time constant (equal to that
for RS1 cells) but differ with respect to an “inactivation”
term (not included in FS or RS cells) that controls the
delay for a given input. LS1 cells exhibit the shortest de-
lays, and LS4 cells produce the longest delays. 

Interspike interval versus interval number rela-
tionships. The accommodation tendency exhibited by
each type of cell is another critical aspect of the neuronal
dynamics. Recall that FS cells are nonaccommodating,
the RS cells are strongly accommodating, and the LS cells
are anti-accommodating (see Figure 3). For our FS model
neurons, the interspike interval is fixed across successive
intervals, thus showing no accommodation. With stronger
inputs, the interspike intervals are shorter (meaning
higher firing frequency) but remain fixed within a spike
train, given a constant input. For our RS model neurons,
the interspike intervals across successive intervals are
not constant in response to a fixed input but grow pro-
gressively longer until the cell stops firing. As the input
intensity increases, the interspike intervals decrease (the
firing frequency increases). The LS cells exhibit anti-
accommodation, meaning that the interspike intervals
become progressively shorter across a spike train. As the
input intensity increases, the interspike intervals decrease
(the firing frequency increases). 

Activity Delays and Windows
One essential feature of the model is that chains of LS

cells terminated by RS cells can produce a spectrum of
activity windows delayed by various amounts from the
CS onset. This spectrum of activity windows allows the
mapping of time onto space, which makes it possible to use
an ordinary Hebbian synaptic mechanism to learn long
ISIs. An example of a partial set of activity windows is
illustrated in Figure 8, where the abscissa is a continuous
scale (time of firing from the CS onset) and the ordinate
is a nominal scale (arbitrary cell identification number).
Each horizontal set of circles represents the activity win-
dow for a particular cell; the individual circles indicate
the points in time at which the associated neuron fired.
Figure 8 illustrates the activity windows for 20 of the 189
neurons sending activity into the second layer of the
ALa, where CS- and US-produced synaptic activity con-
verge on the same set of postsynaptic cells.

For visual convenience, the windows are arranged in
ascending order according to delays from the CS onset.
Synaptic inputs to the second layer of the ALa, whose ac-
tivity can overlap the US input, are subject to modification
by the Hebbian learning rule. Greater overlap produces a
faster rate of synaptic modification. The mean (�SD) du-
ration of the 189 activity windows, calculated from seven
noise-injected trials, was 778 � 185 msec. With more neu-
rons to form longer chains or recurrent circuitry, it is
possible to encode (by mapping time onto space) a much
larger range of CS–US intervals (see the Discussion 
section). 

Pairing-Specific Temporal Encoding
Prior to conditioning, all second-layer ALa cells were

unresponsive to the CS. In the experimental condition,
after six conditioning trials in which the CS and US were
explicitly paired (so as to overlap temporally), there was
always CS-produced output, regardless of the ISI used

Figure 7. Delay to initiate spike firing as a function of input in-
tensity. The relationship between delay (D) and input intensity
(I ) is shown for all three cell types. The D–I curves are quite dif-
ferent for the various cell types and subtypes. (A) D–I curves are
compared for the four subtypes of regular-spiking (RS) cells
(RS1–RS4), and these are contrasted with the fast-spiking (FS)
cell as a common reference point. (B) D–I curves are compared
for the four subtypes of late-spiking (LS) cells (LS1–LS4), and
these are contrasted with the FS cell. On this expanded time
scale, the FS cell appears to fire with no delay, but in fact the delay
is the same as it was when plotted in relationship to the RS cells.
Note that the ordinate has been changed to include more time. 
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in conditioning. In contrast, in the control condition, in
which the CS and US were explicitly unpaired (so that
there was no temporal overlap between them), six trials
never resulted in CS-produced output (even when noise
was added; see below), because synaptic potentiation
could not occur. Thus, any CS-produced output from the
ALa is always and exclusively the result of associative
learning. In what follows, therefore, we do not make ex-
plicit comparisons with the control (pseudoconditioning)
group, because such comparisons furnish no additional
information. This demonstration of pairing-specific out-
put was, of course, a minimal requirement for the model. 

In regard to conditioning, the goals of this research
were more ambitious and concerned temporal aspects of
the learning. Recall that 13 different ISI training intervals
were explored in the experimental condition (paired CS–
US). The first question was whether, in this very simpli-
fied model, the circuit could encode the CS–US inter-
val, using only properties suggested by the anatomy and
physiology. In addressing this issue, the network was
trained using noise-free synapses. We then used a testing
trial (CS alone) to examine the relationship between the
training ISI (on the abscissa) and the latency of all CS-
generated output activity in second-layer ALa neurons (on
the ordinate). 

Each point in the scatterplot shown in Figure 9A indi-
cates the firing latency (from the CS onset) of second-layer
ALa neurons as a function of the training ISI. The results
plotted at each ISI represent the consequence of six con-

ditioning trials (CS–US pairings). The best-fitting re-
gression line to describe these data ( y~ = mx + b), based
on the method of least squares (see Figure 9A), had a
slope m close to unity (m = 0.995) and a y-intercept
slightly greater than zero (b = 0.027 sec). The excellent
temporal encoding was reflected in the coefficient of de-
termination, r 2 = .996. The answer to our first question
was that the circuit clearly is able to learn CS–US inter-
vals in the range of 0.5–16 sec and to do so with impres-
sive precision.3

Appropriate Noise Causes
Weber-Like Temporal Encoding

The previous result naturally leads to our second ques-
tion, which was whether the temporal learning mecha-
nism naturally conforms to a Weber-like law. A modern
interpretation of Weber’s law (Weber, 1851)—in the con-
text of the present experiments—is that variability in the
response latency (σ) associated with each training ISI
should be proportional to the mean response latency (µ)
associated with that ISI (Gibbon, 1977; Gibbon et al.,
1997). That is, the coefficient of variation (cv) should be
relatively constant across ISIs (cv = σ /µ = constant).
There is a sizable body of data in support of this gener-
alization (Gibbon, 1977). In stark contrast to this expec-
tation, what we observed in noise-free simulations (Fig-
ure 9A) was that the response latency variability was
roughly uniform and independent of the mean response
latency. Consequently, the cv decreased monotonically
with increasing ISIs. 

One hypothesis is that the Weber law (for time) results
from underlying random variation in a noise variable (Gib-
bon et al., 1997). As indicated earlier, there are several
likely noise sources in regard to CS processing in the PR–
ALa circuit. The third question we addressed was whether
adding noise to the model would result in Weber-like tem-
poral learning. In a second set of simulations, we added
noise to the synapses by sampling a new Gaussian variate
at every 1-msec time step (see Equation 24 of Appen-
dix D). Even with relatively large amounts of synaptic
noise, the response latency variability did not increase
with longer training ISIs. The results (not shown) re-
sembled the noise-free simulations shown in Figure 9A.
Clearly, noise per se was not sufficient to generate the
Weber effect.

A third set of simulations revealed an important inter-
action between the noise frequency spectrum and the in-
ternal system dynamics. In these simulations, lower fre-
quency noise was introduced by randomly sampling from
a uniform distribution (with limits of 50 and 250 time
steps) the time step on which the random variate would be
changed to a new value. The set of conditioning sessions
given, and the number of trials within each conditioning
session, remained the same as in the noise-free simula-
tions. Under these circumstances, even relatively small
amounts of this low-frequency noise produced Weber-like
encoding (Figure 9B); specifically, the response vari-
ability increased with the mean response latency (and the

Figure 8. Spectrum of delayed firing onsets and associated ac-
tivity windows. Each horizontal line is the time over which a par-
ticular cell in the adjacent lateral amygdala (ALa) was active, rel-
ative to the onset of the conditioned stimulus (CS). These are the
first-layer ALa neurons whose axonal projections make Hebbian
synapses onto second-layer ALa neurons, which also receive a di-
rect input from the unconditioned stimulus. The activity windows
are arranged from bottom to top in order of increasing delays.
The cell whose activity is illustrated in the lower left began firing
soon after the CS onset and stopped firing long before the CS ter-
minated. The cell whose activity is shown in the upper right
began firing long after the CS onset. Illustrated here is a sample
of just 20 of the 189 ALa neurons that participate in time–space
mapping (see the text for further explanation). 
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training ISI). The results shown in Figure 9B are for the
case in which the magnitude of the noise, κcv , was rela-
tively small (κcv was drawn from a uniform distribution
with limits of 0.000 and 0.100). 

Note also that the accuracy of the temporal encoding
remained excellent. Over the training range of 0.5– 16 sec,
the best-fitting straight line ( y~ = mx + b), based on the
method of least squares (see Figure 9B), had a slope m
near unity (m = 1.008) and a y-intercept slightly greater
than zero (b = 0.077). The excellent temporal encoding
was reflected in the coefficient of determination r2 = .971.
The earliest output spikes always anticipated the US onset,
an effect that we have just begun to study (Faulkner, Mc-
Gann, et al., 1997). 

Two Sources of Variability
in Response Latency for Each ISI

Examination of the data (Figure 9) reveals two sources
of variability in the conditioned response latency for a
given ISI. The first is associated with the intrinsic encod-
ing accuracy of the circuit, based on factors under our con-
trol. This small source of variability was evident in the
noise-free simulations (Figure 9A). It clearly violated the
Weber law, in that the cv was not constant but decreased
monotonically with larger conditioning ISIs; that is, the
intrinsic or noise-free source of variability was roughly
constant across the range of training ISIs. With greater
numbers of neurons and smaller activity windows, this
source of variability can be made arbitrarily small. 

To isolate the contributions of noise per se to the re-
sponse variability, we subtracted the intrinsic variability
(evident in Figure 9A) from the total variability after
noise injection (the variability increase evident in Fig-
ure 9B) as follows. We calculated the variance associated
with the intrinsic (noise-free) circuit function for each
ISI, then subtracted it from the total variance for each ISI
associated with the simulations that included noise in-
jection. The remaining variance was then used as our es-
timate of the noise-produced latency variance. From the
square root of this remaining variance and the mean re-
sponse latency associated with simulations that included
noise, we found the noise-produced cv at each ISI. The
regression of cv on ISI revealed that the noise-produced
cv was essentially constant and independent of the ISI.
For the best fitting regression line ( y~ = mx + b), the slope
was essentially zero (m = �4.872 � 10�7), and the y-
intercept (b = 0.083) was close to the mean value (c�v� =
0.080). Thus, injection of appropriate noise produced a
Weber-like relationship between error and magnitude.

DISCUSSION

A fundamental problem in understanding temporal as-
pects of learning has been to identify possible cellular
and circuit-level neurobiological mechanisms that can be
utilized across the range of tenths of seconds to tens of sec-
onds (Gibbon et al., 1997). A common assumption is that
this is a circuit-level problem that can be solved simply
by invoking notions of reverberatory loops. Unfortu-
nately, such loops become unrealistically large with con-
ventional neuronal dynamics (RS cells). The numbers of
neurons and/or the numbers of reverberations are so
large that the circuit must become unstable and easily dis-

Figure 9. Simulated Pavlovian conditioning demonstrating ac-
curate temporal learning. The conditioned stimulus (CS) fires
cells in the second layer of the lateral amygdala after condition-
ing but not before, and only if the CS and the unconditioned stim-
ulus (US) are explicitly paired (see the text). (A) The scatterplot
reveals excellent temporal encoding of the CS–US interval. Note
that the accuracy of predicting the time of the US onset does not
decrease as the interstimulus interval (ISI) increases, in contrast
to expectations of a Weber-like encoding principle. (B) When the
synapses were injected with low-frequency noise, the response 
latency variance clearly increased with the mean response la-
tency and the training ISI. The results are the sum of seven sets
of simulations for each ISI. Further analysis indicated that the
noise-produced latency variability increased linearly with the
mean response latency, meaning that the coefficient of variation
exhibited no trend and little variability across different ISI con-
ditioning intervals. The earliest spikes always preceded the US
onset. 
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ruptable—even if one assumes an implausibly precise
topographical projection system around the loop.

By contrast, using a combination of RS and LS cells, we
have shown that purely feedforward chains of no more
than 16 neurons (14 in the PR and 2 in the ALa) can ac-
curately encode time intervals from 0.5 to 16 sec, and
this occurs with no assumptions regarding the precision
of projections beyond what is seen experimentally. The
methods and results presented here are the first step in
formalizing an earlier qualitative model (Faulkner, 1997;
Faulkner, Tieu, & Brown, 1997) that emphasized the role
of the PR–ALa region in temporal aspects of fear condi-
tioning. This has been a bottom-up approach, starting with
experimentally observed neuronal properties and proba-
ble connections. To implement the computational model,
we have been developing efficient computer code that is
able to simulate sizable amounts of real time in circuits
containing large numbers (~1,600) of dynamically real-
istic neurons (Faulkner, McGann, et al., 1997; Tieu et al.,
1996). 

Solution to the Contiguity Dilemma
For centuries, philosophers and psychologists have fo-

cused on temporal contiguity as the kernel of associative
learning. With the discovery of associative LTP and its
underlying Hebbian mechanism, it became clear that a
cellular mechanism exists for contiguity-based learning
(Barrionuevo & Brown, 1983; T. H. Brown et al., 1990;
Kelso & Brown, 1986; Kelso et al., 1986). Indeed, some
forms of perceptual learning are undoubtedly based on
contiguity. Although it is certain that humans and other
animals do form associations among contiguous events,
it is equally clear that they also learn temporal relation-
ships among sequential events. The problem is that the
properties of associative LTP do not furnish insight into
the neurobiological basis of temporal aspects of learning
(Shors & Matzel, 1997). This fact has been invoked to
question whether associative LTP even has the right prop-
erties for certain forms of learning (Shors & Matzel,
1997). 

By creating a spectrum of activity windows (Figure 8)
that map time onto space, the model is able to learn se-
quential temporal relationships using an ordinary Heb-
bian synaptic mechanism. We outlined a general solution,
tested it through computer simulations of a dynamical
neuronal circuit, and showed that the circuit was able to
encode and learn time intervals ranging from tenths of
a second to tens of seconds (Figure 9). The intrinsic neu-
rodynamics and cellular neuroanatomy were the key to
this temporal learning mechanism. The existence of LS
cells that (1) can delay firing for seconds, (2) exhibit anti-
accommodation, and (3) are organized into chains fur-
nishes a general approach for encoding large time inter-
vals. We do not assume that the mechanisms described
here are unique to fear conditioning circuitry. They may
be involved more generally in temporal aspects of be-
havior that involve many other brain regions with which

the perirhinal–amygdala (PR–AM) region has connec-
tions, including the frontal lobes and basal ganglia.

Conditions and Accuracy
of Associative Learning

In these simulations, learning reliably occurred in the
ALa when the CS was explicitly paired with (temporally
overlapped) the US. Most importantly, the circuit not only
acquired a neural conditioned response (CR), but the tim-
ing of the CR matched the training ISI. Temporal learn-
ing was immediately retrievable (and implicitly repre-
sented) by the latency of CS-produced activity in the
output cells (the “neural CR”), which began just before
the expected time of the US onset. Interestingly, the tem-
poral encoding was highly accurate (the coefficient of
determination remained high, r 2 � .95, even after the in-
troduction of noise into the circuitry), as measured by
the relationship between the CS–US training ISI used
during conditioning and the latency of CS-produced ac-
tivity during testing (Figure 9B). There are obvious and
easy ways to extend the time domain over which the
model can perform. Because such extensions increase
simulation times but do not introduce new principles, we
limited the upper end of the ISIs that could be encoded
to about one fourth of a minute. The upper limit can be
extended by using longer chains of LS cells and/or by
introducing activity loops.

As expected on the basis of the circuitry, learning did
not occur when the CS and US were explicitly unpaired
in the pseudoconditioning regime. Perhaps not so obvious
is the fact that the circuit as constructed also does not
allow trace conditioning. Although this is not difficult to
incorporate into the computational model, to do so re-
quires adding recurrent excitatory connections, which we
wanted to avoid initially for simplicity in favor of a purely
feedforward network. The effects of recurrent circuitry,
included in our conceptual model (Faulkner, Tieu, &
Brown, 1997), are discussed below in connection with
other learning phenomena that we are currently exploring.

Weber Effect and Noise Spectrum
In the absence of added noise, the accuracy of tempo-

ral encoding does not decrease as the CS–US interval in-
creases (Figure 9A). This is a good feature from an en-
gineering point of view, but it does not comply with what
is known from the behavioral literature. A modern inter-
pretation (Gibbon et al., 1997) of the Weber law (Weber,
1851) in the time domain is that the coefficient of varia-
tion of the response should be proportional to the mean
response latency, which is clearly not true in Figure 9A.
However, the results were quite different when we added
the appropriate noise (Figure 9B) and were consistent with
the hypothesis (Gibbon et al., 1997) that temporal aspects
of the Weber law can emerge from random noise. 

It is interesting to note that the spectral aspects of the
noise are critical in producing the Weber effect when it
emerges within the intrinsic system neurodynamics. High-
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frequency noise was essentially without effect, because
these model neurons are dynamically realistic in acting
as low-pass filters. When the noise spectrum became
appropriate to the system dynamics, the Weber effect im-
mediately emerged in remarkable form. We conclude that
there is an interaction between the spectral/amplitude
aspects of the noise and the neuron/circuit dynamics, a
phenomenon that warrants further investigation at the
neuronal and behavioral levels. This is a good example of
the kind of phenomenon that cannot emerge from learn-
ing models that ignore the underlying neurodynamics.
Interestingly, the cv was somewhat less than 0.1, which
is of the magnitude reported by many behavioral studies
(see Figure 3 of Gibbon et al., 1997). 

Probable Effects of Adding Recurrent Synapses
Although the computational model is a purely feed-

forward circuit (Figure 5), it is important to recall that the
amygdala and PR are replete with intrinsic recurrents, rec-
iprocal connections with each other, and loops that in-
clude other brain regions. Introducing excitatory feedback
into a network of dynamical neurons invites instability,
which is why it was not done in this first model; but it is
worth noting that even relatively small loops that include
LS cells can encode very large amounts of time. The
anatomy is consistent with the possibility that chains and
loops could exist within both layer II/III and layer VI
(Figure 1A), and there is also evidence that these two re-
gions may themselves be reciprocally connected by LS
cells (Faulkner & Brown, in press). 

Adding recurrent excitation to the circuitry requires
also adding appropriate feedforward and feedback inhi-
bition (to prevent epileptiform activity). Indeed these brain
regions are well known to be very seizure prone. We are
currently developing models with recurrent excitation to
explore a variety of other computations that may be sup-
ported by the PR. It seems reasonable to regard small
loops of LS cells as a robust way to instantiate stimulus
traces (Schmajuk, 1997) that persist beyond the duration
of the initiating event. By making the neural activity out-
last the termination of the initiating stimulus (see Young,
Otto, Fox, & Eichenbaum, 1997), it becomes possible to
span gaps in time. This is important in trace Pavlovian
conditioning paradigms and also in delayed nonmatch-
ing-to-sample tasks. There has also been a long history of
interest in recurrent circuits functioning as autoassocia-
tors (see Anderson, 1985; Hinton & Anderson, 1981;
Hopfield, 1984; Kohonen, 1984). In reviewing possible
autoassociative functions of the hippocampus, this lab
previously noted that

Temporal sequences of patterns can be learned by an au-
toassociator if the output is fed back, after a time delay, into
the input (Kohonen, 1984). Increasing the number of dif-
ferent time delays can improve the temporal learning. . . .
The spatiotemporal pattern completion that such a network
can perform is reminiscent of what some classical learning
theorists used to call redintegration (Hull, 1929). Redin-

tegration was once considered a fundamental mental pro-
cess (Hollingworth, 1928), but until recently it was not
clear how this might be implemented neurophysiologi-
cally. (T.H. Brown & Zador, 1990, p. 387)

We should emphasize that autoassociative recurrent
circuits can use what could be termed contextual infor-
mation as a retrieval cue (Anderson, 1985; Anderson,
1995; Churchland, 1995; Hinton & Anderson, 1981;
Hopfield, 1984; Kohonen, 1984). This may, in fact, be
one possible way that context enters into the expression
of conditioning (Bouton & Bolles, 1985). In such recur-
rent circuits, context can also be used to bind episodic in-
formation across time (for a recent discussion, see Wal-
lenstein, Eichenbaum, & Hasselmo, 1998). As more is
learned about the microcircuitry and plasticity of the
PR–AM system, it will clearly be important to explore the
contributions of recurrent circuitry to contextual and trace
Pavlovian fear conditioning. 

Relationships to Certain Other Timing Models
A distinction is sometimes made between networks that

encode time on the basis of a spectrum of delay lines and
those that encode time on the basis of intrinsically time-
varying processes (Anton, Lynch, & Granger, 1991;
Bankes & Margoliash, 1993; Braitenberg, 1967; Buono-
mano & Merzenich, 1995; Desmond & Moore, 1988;
Fujita, 1982; Hopfield, 1995; Jaffe, 1992; Jeffress, 1948;
Mial, 1989; Moore et al., 1989; Sullivan, 1982). Our so-
lution incorporates both approaches by making use of re-
alistic endogenous neuronal dynamics in an appropriate
circuit to create a spectrum of time-delayed activity win-
dows that can accurately encode temporal information
over the range of tenths of seconds to many seconds. 

Our computational model can be seen as a specific,
neurobiologically based platform for more abstract ideas
that have been expressed and utilized elsewhere. The VET
model4 of Moore and colleagues (Moore & Choi, 1997)
is a good example. Their “cascades of spreading activa-
tion” are described as follows:

This spreading activation sequentially engages time-
tagged “input elements.” These input elements can be re-
garded as serial components of the nominal CS. . . . Com-
putations on these sequentially activated elements give
rise to CRs that mirror the CS–US intervals employed in
training. Such CRs are said to be temporally adaptive. . . .
Both CS onsets and offsets are presumed to trigger cascades
of spreading activation. (Moore & Choi, 1997, p. 119)

In our model, serial components of the nominal CS are
obtained via a spectrum of delay lines and associated ac-
tivity windows (Figures 5 and 8). One important difference
is that, in our purely excitatory and feedforward simu-
lated circuit (Figure 5), activity is only initiated by the
CS onset. The idea of activity windows also appears in
the Mauk–Donegan model (Mauk & Donegan, 1997), al-
though their windows have different neurobiological ori-
gins and computational implications.
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Biophysical and Molecular Mechanisms
The ability to engulf large amounts of time with single

LS neurons results from the unusual manner in which
they delay firing. Their long latency to fire is not due to
a long membrane time constant. In fact, the membrane
time constants of these cells are within the normal range
for the PR (Faulkner, 1997; Faulkner & Brown, 1996).
Preliminary voltage-clamp studies (Faulkner, 1997) are
consistent with the possibility that the delayed firing is
due to a potassium current that (1) is strongly activated
near the spike threshold and (2) inactivates unusually
slowly. This may be what has been termed a D-current
(Johnston & Wu, 1995). There are a large number of potas-
sium currents that have various inactivation properties.
As more is learned about the biophysics and molecular
biology of potassium channels (see Edwards & Weston,
1997; Hoshi, Zagotta, & Aldrich, 1991; Johnston & Wu,
1995; Lopez-Barneo, Hoshi, Heinemann, & Aldrich,
1993), it should become possible to identify with some
confidence the conductance mechanisms responsible for
delayed spiking. Such an identification would be a fas-
cinating first step in formulating a possible linkage be-
tween conductance properties of a particular class of ion
channels and a fundamental aspect of cognitive and
motor function. 

Circuit-Level Formalism
for Bridging Levels of Analysis

The present simulator (YNET) preserves the dynamical
input–output properties of the neurons without incurring
the overhead associated with traditional, conductance-
based compartmental modeling, which this laboratory
has been doing since the late 1970s. Further improve-
ments in this intermediate-level simulator will allow
easy transitions between connectionist and biophysical
studies and will enable a deeper understanding of the na-
ture and extent to which fundamental computations of
large circuits emerge from dynamical aspects of the in-
dividual neurons. We suspect that it will be necessary to
explore relatively large-scale and dynamically realistic
circuits to begin generating deep theoretical insights into
the mechanisms of learning in parallel-distributed sys-
tems. This entails incorporating, in a parallel-distributed
fashion, the contextual/temporal framework within which
motor and cognitive aspects of learning mechanisms op-
erate (see Bouton, 1993; Bouton & Bolles, 1985; Church,
1984; Gibbon et al., 1997; Holland, 1986; Ivry, 1996;
Rescorla, Durlach, & Grau, 1985; Schmajuk, 1997; Wal-
lenstein et al., 1998). 
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NOTES

1. There are several recent general reviews of the overall anatomical
organization of the amygdala and/or the perirhinal cortex (see Burwell
& Amaral, 1998; Burwell, Witter, & Amaral, 1995; Faulkner, 1997;
Swanson & Petrovich, 1998).

2. The maximum possible input intensity (Imax ≈ 98) can occur in the
special case of a second layer ALa neuron receiving US input (I = 60),
the maximum possible CS input for plastic synapses (Imax = 28), and
high noise (Inoise max ≈ 10). 

3. Recall that testing trials never produce output when the CS and US
are unpaired in the conditioning trials. Therefore, any and all output
from the second-layer the ALa neurons reflects associative condition-
ing, because there is no spontaneous activity in these neurons and
pseudoconditioning causes no output.

4. The acronym VET derives from “associative values based on ex-
pectation about t iming” (Moore & Choi, 1997).

APPENDIX A
Equations Governing Fast-Spiking Neurons

For FS cells, the accumulator, denoted A(t), is updated according to the following rules:

(1)

where I (t) is the summed input to the neuron at time t; �A is the neuron’s spiking threshold; and cA is a con-
stant. U (t) is an update function, defined as follows:
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APPENDIX A (Continued)
where τA is a time constant for the accumulator; A(t � 1) in the numerator is a dissipation term; and ∆t is the
time step (1 msec). The values of all constants used in the equations in Appendices A–C are given in Table E1
of Appendix E. 

When a neuron reaches its threshold for spiking, the output of the processing unit is set to 1, indicating that
the cell spiked when it crossed threshold. Following the cell’s first spike, the frequency generator is activated.
This module takes the value of the accumulator, A(t), and computes a spiking frequency (in hertz), 	(t), ac-
cording to the sigmoid function:

(3)

where 	max and 	min are, respectively, the maximum and minimum spiking frequencies, c	 is a constant that
sets the slope of this sigmoid, and cδ is a constant that shifts the dynamic range of the function relative to its
inputs. Equation 3 produces a sigmoid input–output function and allows for a minimum firing frequency 	min.
In the simulations shown here, 	min is zero (Table E1 of Appendix E). The spike generator takes the spiking
frequency 	 (t) and sets the output of the processing unit O (t) to either a 1 or a 0, according to the equation

(4)

where [int] indicates that fractional values are truncated before applying the test, and tps is the time of the pre-
vious spike (recall that the neuron always spikes when the threshold is crossed for the first time, before t ps has
a legitimate value). The remaining state variables are then updated as follows:

I (t):= 0; (5)
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APPENDIX B
Equations Governing Regular-Spiking Neurons

The frequency and spike generators are the same in RS cells as in FS cells, except for the value of cδ (Equa-
tion 3), which is slightly greater for RS cells (Table E1 of Appendix E). The major difference between the two
cell types is that RS cells contain a fifth module in their implementation, called the accommodator (see Fig-
ure 2), which affects the recurrence relation governing the accumulator. As the value of the accumulator ap-
proaches spiking threshold, A(t) is given by the following equation:

(7)

where K(t) is an accommodation term produced by the accommodator module. When the unit reaches the
threshold for spiking, �A, the value of the accumulator is increased to equal the current input: 

A(t) := I (t), (8)

and the processing unit’s output, O(t), is set to 1, indicating that the cell spiked when it crossed threshold.
Once the cell exceeds threshold, the value of its accumulator is governed by the equation: 

(9)

However, Equation 7 replaces Equation 9 whenever A(t) drops below spiking threshold. K(t) and the terms on
which it depends are defined as follows: 
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APPENDIX B (Continued)

(10)

(11)

Kmax is a positive constant, and n∞(A) andτ n(A) are given by: 

(12)

(13)

Accommodation is modeled by K(t), which can be likened to a potassium conductance governed by a maxi-
mum value Kmax and an activation term n(t), which exponentially approaches n∞(A), the limiting value of n(t)
for a given magnitude of A. An additional function, denoted S(t), secures full accommodation in RS cells. S(t)
is initially zero, in which case it has no effect on the RS cell. During a learning trial, S(t) monitors the time
that has elapsed since the neuron’s most recent spike (t � tps). If this amount of time exceeds a predetermined
multiple (λ) of the initial interspike interval (ISpI0), and if two additional conditions are also met (one of which
specifies that ISpI0 must exist), then S(t) is set to one:

(14)

If S(t) becomes equal to one, the parameters held in the state are immediately changed as follows:

	(t) :=0; (15)

O (t) :=0. (16)

The ultimate effect of Equations 14–16 is that once S(t) becomes 1, the neuron will not spike for the re-
mainder of the trial (recall that there are six trials in each conditioning session). S(t) ensured accommodation
in all RS cells except for those in the second layer of the ALa, which often receive temporally disjoint inputs pro-
duced by the CS and US and therefore may emit more than one train of spikes. Recall that our model neurons
cannot fire in the absence of input. Whenever S(t) causes a RS neuron to stop firing, all the subsequent neu-
rons in that chain cease firing as well (except for the terminal neuron, which can be fired by the US). Synaptic
modification does not occur if either the pre- or the postsynaptic neuron has a spiking frequency of zero. 

Once any neuron in a chain stops firing, no further synaptic changes can occur in that chain until the next
trial. Note that all the chains (both LS and RS) are terminated by two RS neurons in the ALa and that, once
the first of these (the preterminal neuron) stops firing, no further LTP or LTD can occur within that chain for
the remainder of the trial. The run times were reduced significantly by setting S(t) equal to 1 for all nontermi-
nal neurons in a chain once S(t) became 1 for any nonterminal neuron in that chain. 
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APPENDIX C
Equations Governing Late-Spiking Neurons

LS cells are represented by equations similar to those used for RS cells, with two exceptions. First, when a
LS cell crosses threshold, the value of its accumulator, A(t), is set to the value

A(t) := A (t � 1) + c11
� I (t)2 � c12

� I(t) + c13
, (17)

where c11
, c12

, and c13
are constants (Equation 17 replaces Equation 7). Second, the accommodation term, K(t),

is redefined and also includes “inactivation,” h(t), such that

(18)

(19)

(20)

where h∞(A) is the asymptotic value of h(t) for any given value of A(t). The terms n(A) and τ h(A) are defined
as follows:

(21)

(22)

Note that Equation 21 differs from Equation 11 in that it represents an instantaneous activation as a function
of the value of the accumulator (A).
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APPENDIX D
Equations Governing Synapses

The strength of the synaptic input to postsynaptic neuron i from presynaptic neuron j is termed a synaptic
weight and is denoted wi j. The synaptic input to postsynaptic neuron i, Ii (t), is just the sum of the products of
the weights and their corresponding presynaptic activities, aj: 

(23)

Synaptic noise is represented as follows:

(24)

where z is a standardized Gaussian variate (mean of zero and standard deviation of unity) and κcv is a random
variable that sets the coefficient of variation of the noise modulation of the input. κcv is drawn from a uniform
distribution with limits of 0.000 and 0.100.

At plastic synapses, the weight at time t between neurons i and j is updated on each subsequent time step
according to the recurrence relation:
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APPENDIX D (Continued)
where ∆wi j (t) is the change in the strength of the connection between neurons i and j at time t, and L and U
are the lower and upper bounds on wij(t), respectively. The values of all the constants used in the equations gov-
erning plastic synapses are listed in Table E2 of Appendix E.

∆wi j (t) from Equation 25 is determined as follows:

∆wi j (t) := φ{ai (t),�p, �d } � η{aj (t)}, (26)

where ai (t) is the postsynaptic spike frequency and η{aj (t)} is the differentially weighted presynaptic spike fre-
quency. The quantity φ{ai (t), �p, �d} is the postsynaptic contribution to potentiation ( P ) or depression (D):

(27)

where �d and �p are the thresholds for depression and potentiation, respectively, and D and P are given by the
following set of equations:

D:= α � ai (t)2 + β � ai (t) + γ; (28)

P:= (2α � �p + β )  (a i (t) � �p), (29)

(30)

γ := α � �d � �p, (31)

where α is a constant greater than zero, β � 0, and γ � 0.
The expression η{a j (t)} in Equation 25 is defined as

(32)

where n1 � n2, which has the effect of increasing the rate of potentiation relative to depression, other things
being equal.
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APPENDIX E
Parameters and Constants for Neurons and Synapses

Table E1
Parameters Used in Constructing RS, LS, and FS Cell Types

Symbol Equations RS LS F S
�A 1, 3, 9, 14 20 20 20
cA 1, 9 1 1 1
τA 2, 7, 9 RS1 46.5 46.5 10

RS2 92
RS3 183
RS4 274

	max 3 40 40 120
	min 3 0 0 0
cδ 3 28 28 26
c	 3 1.5 1.5 1.5
Kmax 10, 18 15 
 106 38 NA
cn∞

12 20 NA NA
τ n,max 13 40 
 103 NA NA
cτ n, min 13 5 NA NA
c1τ n

13 20 NA NA
c2τ n

13 10 NA NA
λ 14 4 NA NA
c11

17 NA 0.0408217 NA
c12

17 NA 1.46387 NA
c13

17 NA 12.4152 NA
ch∞

20 NA 15 NA
cn 21 NA 15 NA
τ h , max 22 NA LS1 400 NA

LS2 745
LS3 1622
LS4 5150

cτ h, min
22 NA 5 NA

cτh, 1 22 NA 15 NA
cτh, 2 22 NA 4 NA

Table E2
Parameters Used in Computing Synaptic Plasticity

Symbol Equations Value

L 25 0
U 25 28
�p 26, 27, 30–32 38.7
�d 26, 27, 30, 31 0.5
� 28–31 1.0
n1 32 6 
 10�5

n2 32 1 
 10�5

{

{
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